В остальных случаях с помощью аналогичных методов получена полная классификация вещественных четырехмерных алгебр Ли для которых тензор Вейля является почти гармоническим.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант 08-01-98001), а также при поддержке Совета по грантам Президента Российской Федерации (грант НШ-5682,2008,1).

Библиографический список

- 1. Бесе, А. Многообразия Эйнштейна : в 2 т., т. 2; пер. с англ. / А.Бессе. М. : Мир, 1990. 384 с.
- 2. Кремлев, А.Г. Сигнатура кривизны Риччи левоинвариантных римановых метрик на четырехмерных группах Ли. Унимодулярный случай / А.Г. Кремлев, Ю.Г. Никоноров // Математические труды. -2008. Т. 11, №2. С. 115–147.
- 3. Кремлев, А.Г. Сигнатура кривизны Риччи левоинвариантных римановых метрик на четырехмерных группах Ли. Неунимодулярный случай / А.Г. Кремлев, Ю.Г. Никоноров // Математические труды (в печати).

Об определении овально-прикасаемых множеств в аффинном пространстве

Л.А. Завьялова АлтГПА, г. Барнаул

В работе [1, с. 16] сформулировано определение овально-прикасаемого множества в n-мерном евклидовом пространстве. Оказывается, что данное определение можно обобщить на аффинный случай. Заметим, что определение овально-прикасаемого множества является аффинным обобщением понятия δ -прикасаемого множества, которое ввел Ю.Г. Решетняк в статье [2, с. 382].

Введем следующие обозначения: A^n-n -мерное аффинное пространство; точки и подмножества аффинного пространства A^n будем обозначать заглавными латинскими буквами. В пространстве A^n рассматривается обычная топология. Если множество $F \subset A^n$, то intF, ∂F — соответственно внутренность и граница множества F.

Выпуклое тело в пространстве A^n , границей которого является эллипсоид, будем называть «заполненным» эллипсоидом. Образ множе-

ства при параллельном переносе назовем «транслятом» этого множества.

Определение 1. Замкнутое множество $F \subset A^n$ называется $\omega_{\scriptscriptstyle 0}$ -прикасаемым множеством, если для каждой точки $X \in F$ задана некоторая система $\sigma(X)$ транслятов заполненного эллипсоида $\omega_{\scriptscriptstyle 0}$, содержащих точку X, причем системы $\sigma(X)$ обладают следующими свойствами:

- 1) если заполненный эллипсоид $\omega \in \sigma(X)$, то никакая внутренняя точка заполненного эллипсоида ω не принадлежит множеству F;
- 2) пересечение всех заполненных эллипсоидов системы $\sigma(X)$ имеет хотя бы одну внутреннюю точку;
- 3) если $X_i\in F$, $\omega_i\in\sigma(X_i)$, i=1,2,..., и при $i\to\infty$ $X_i\to X$ и $\omega_i\to\omega$, то $\omega\in\sigma(X)$. [1, с. 16]

Таким образом, $\omega_{_0}$ -прикасаемое множество (или овально-прикасаемое множество) характеризуется тем свойством, что каждой граничной токи этого множества можно коснуться заполненным эллипсоидом ω , который является транслятом данного заполненного эллипсоида $\omega_{_0}$, причем внутри заполненного эллипсоида ω точек множества нет.

Естественным образом возникает вопрос: зависит ли свойство множества быть $\omega_{\scriptscriptstyle 0}$ -прикасаемым от выбора заполненного эллипсоида $\omega_{\scriptscriptstyle 0}$? В настоящей работе ответ на данный вопрос получен для множеств, рассматриваемых в пространстве $A^{\scriptscriptstyle 2}$. Доказано следующее утверждение.

Теорема 1. Пусть множество $F \subset A^2$ является $\omega_{_0}$ -прикасаемым и $\overline{\omega}$ — произвольный заполненный эллипсоид в A^2 . Тогда существует заполненный эллипсоид, гомотетичный $\omega_{_0}$, такой, что в каждой точке множества F можно определить системы его транслятов, которые будут удовлетворять условиям 1)-3) в определении 1.

Кроме того, был получен следующий результат.

Теорема 2. Пусть γ_0 и γ — эллипсы в пространстве A^2 . Тогда существует эллипс $\widetilde{\gamma}$, гомотетичный эллипсу γ , такой, что в каждой точке $X \in \gamma_0$ можно построить транслят эллипса $\widetilde{\gamma}$, касающийся эллипса γ_0 в точке X внутренним образом и содержащийся в заполненном эллипсоиде, ограниченном эллипсом γ_0 .

Библиографический список

- 1. Завьялова, Л.А. Об определении ω_0 -прикасаемых множеств в n-мерном евклидовом пространстве / Л.А. Завьялова // Вестник БГПУ: Естественные и точные науки. − 2007. − №7. − С. 16–21.
- 2. Решетняк, Ю.Г. Об одном обобщении выпуклых поверхностей / Ю.Г. Решетняк // Математический сборник. 1956. Т. 40, №3. С. 381–398.

Поиск полного решения биматричной игры

К.О. Кизбикенов

АлтГПА, г. Барнаул

Известно, что решение биматричной игры, то есть точки равновесия по Нэшу, в большинстве случаев, не единственно. Существуют программы [3], с помощью которых удается найти только одно решение биматричной игры. Естественно, возникает желание получить все решения биматричной игры. Работа посвящена решению этой проблемы.

Напомню некоторые необходимые сведения. Пусть $A=(a_{ij})$ и $B=(b_{ij})$ две матрицы размером $n\times m$, где n количество строк и m количество столбцов. Пусть $x=(x_1,...,x_n)$ и $y=(y_1,...,y_m)$ смешанные стратегии первого и второго игроков. Пусть $x^*=(x_1^*,...,x_n^*)$, $y^*=(y_1^*,...,y_m^*)$ оптимальные стратегии по Нэшу в биматричной игре. Обозначим через S_1 и S_2 спектры смешанных стратегий x^* и y^* .

Теорема. [2] Пара (x^*, y^*) являются оптимальными стратегиями по Нэшу тогда и только тогда, когда она удовлетворяет следующим условиям

$$\exists v_1, v_2 : \forall i \in S_1, \sum_{j=1}^m a_{ij} y_j *= v_1, \quad \forall i \notin S_2, \sum_{j=1}^m a_{ij} y_j *\leq v_1,$$
 (1)

$$\forall j \in S_2, \sum_{i=1}^n x_i * b_{ij} = v_2, \ \forall j \notin S_2, \ \sum_{i=1}^n x_i * b_{ij} \le v_2,$$
 (2)

$$\sum_{i=1}^{n} x_i^* = 1, \ x_i^* \ge 0, \ \sum_{j=1}^{m} y_j^* = 1, \ y_j^* \ge 0.$$
 (3)

Таким образом, если известны множества S_1 , S_2 , то для поиска равновесий Нэша можно просто решить системы линейных уравнений, входящих в (1), (2), и оставить те решения, которые удовлетворяют