

RU

(11)

2 187 512

(13)

C1

(51) МПК **С08В 11/10** (2000.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2001103239/04, 07.02.2001

- (24) Дата начала отсчета срока действия патента: **07.02.2001**
- (45) Опубликовано: 20.08.2002 Бюл. № 23
- (56) Список документов, цитированных в отчете о поиске: CZ 168967, 02.06.1978. SU 757540, 23.08.1980. US 2883375, 21.04.1957. US 2681846, 22.06.1954. US 2580352, 25.12.1951.

Адрес для переписки:

656099, г.Барнаул, пр. Ленина, 61, комн.801, Алтайский госуниверситет, отдел информации (71) Заявитель(и):

Алтайский государственный университет

(72) Автор(ы):

Галочкин А.И., Ананьина И.В., Путилова Е.С.

(73) Патентообладатель(и):

Алтайский государственный университет

(54) СПОСОБ СУЛЬФОЭТИЛИРОВАНИЯ ЛИГНОУГЛЕВОДНЫХ МАТЕРИАЛОВ (57) Реферат:

Изобретение относится к области химической технологии и предназначено для получения натриевых солей сульфоэтиловых эфиров лигноуглеводных материалов, которые могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и газовых скважин, для стабилизации цементных растворов в строительной индустрии, в качестве химических реагентов при флотации руд в горнодобывающей промышленности. Способ заключается в том, что на предварительно активированный лигноуглеводный материал на основе целлюлозы действуют сульфоэтилирующим агентом. Материал состоит из целлюлозы, лигнина, гемицеллюлозы. Активацию проводят 28% раствором гидроксида натрия при 80-82°C в течение 2 ч. В качестве реагента

используется эквимолярная смесь 1,2-дихлорэтана и сульфита натрия, реакцию проводят при температуре кипения изопропилового спирта в течение 4 ч при мольном соотношении реагентов 1:1. Изобретение обеспечивает использование лигноуглеводного материала без его разделения на отдельные компоненты, удешевляется стоимость конечного продукта, улучшается экологическая обстановка, сульфоэтилированные лигноуглеводные материалы обладают более широким спектром свойств. 5 табл.

Изобретение относится к области химической технологии и предназначено для получения натриевых солей сульфоэтиловых эфиров лигноуглеводных материалов, которые могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и газовых скважин, для стабилизации цементных растворов в строительной индустрии, в качестве химических реагентов при флотации руд в горнодобывающей промышленности.

Известны способы сульфоэтилирования крахмала [Pat. 2883375 USA. Sulfoalkyl starch ethers /M.K. Fuller //Chem. Absr., 1959. Vol. 53. 21. 20868^d] и целлюлозы [Pat. 124025 Swed. Cellulose ethansulfonic acid and its salts /T. Timell. //Chem. Absr., 1949. Vol. 43, 22. 9446^d; Pat. 2681846 USA. Fibrous 2-sulfoalkyl ethers of cellulose /J.D. Guthrie, L.H. Chance, C.L. Hoffpauir //Chem. Absr., 1954. Vol. 48, 20. 12417^f; Pat. 2580352 USA. Sulfoethyl ethers of polysaccharides /V.R. Grassie //Chem. Absr., 1952. Vol.46, 6. 2802^b: Авт. св. 757540 СССР. Способ получения сульфоэтилцеллюлозы /Плиско Е.А.. Нудьга Л. А., Петропавловский Г.А. //РЖХим, 1981. 4Т36П], в которых субстрат предварительно активируют щелочью, растворенной в изопропиловом спирте или воде, с последующим отжимом или без него, смешивают с сульфоэтилирующим агентом. Реакцию проводят при 40-90°С в течение 1 -20 часов, в результате чего получают водорастворимые продукты. В качестве сульфоэтилирующего агента используют как β-хлорэтилсульфонат натрия, так и винилсульфокислоту. Степень замещения зависит от температуры и продолжительности реакции, а также от соотношения реагентов.

Наиболее близким по назначению и технической сущности к заявляемому изобретению является способ получения сульфоэтилцеллюлозы, растворимой в воде и водных щелочных растворах, предложенный [авт. св. 168967, ЧССР. Способ получения сульфоэтилцеллюлозы, растворимой в воде и водных щелочных растворах /Раstyr J. //РЖХим, 1978. 12Т7П]. Согласно этому способу, сульфоэтилцеллюлозу получают этерификацией целлюлозы β-хлорэтилсульфонатом натрия в щелочной среде в течение 1-2 часов при 65°С при мольном соотношении - глюкозидное звено целлюлозы: β-хлорэтилсульфонат натрия: NaOH=1:0,5:2,5. Предварительную активацию проводят 40% раствором NaOH в течение 30 мин. Реакцию проводят в среде изопропилового спирта. Получают продукт, растворимый в воде и водных щелочах, со степенью замещения 0,5-0,45. Недостатком этого способа является то, что выделение целлюлозы из лигноуглеводных материалов является энергоемким процессом и сопровождается образованием большого количества отходов (до 50%).

В предлагаемом нами изобретении в реакции сульфоэтилирования используется весь лигноуглеводный материал (древесина различных пород и ее отходы, однолетние растения и т.п.), а не только целлюлоза - один из его компонентов. Преимущества в использовании лигноуглеводных материалов заключаются в том, что, во-первых, с точки зрения доступности исходного сырья, древесина, по сравнению с целлюлозой, вне конкуренции, что значительно удешевляет стоимость конечного продукта. Во-вторых, отпадает необходимость разделения лигноуглеводного комплекса на лигнин и углеводную часть, что позволяет реализовать возможность безотходной технологии. Все основные компоненты

лигноуглеводных материалов (целлюлоза, лигнин, гемицеллюлозы) сульфоэтилируются и в дальнейшем используются, что в значительной степени благоприятно отразится на экологической обстановке в лесозаготовительных и лесоперерабатывающих отраслях промышленности, а также на предприятиях химической переработки древесины. В-третьих, сульфоэтилированные лигноуглеводные материалы обладают более широким спектром свойств, чем сульфоэтилцеллюлоза.

Сущность предлагаемого изобретения заключается в том, что лигноуглеводные материалы без разделения их на отдельные компоненты обрабатывают гидроксидом натрия, а затем эквимолярной смесью сульфита натрия и 1,2-дихлорэтана в среде изопропилового спирта.

Задачей изобретения является получение натриевых солей сульфоэтилированных лигноуглеводных материалов, растворимых в воде до 75% и в 2% растворе щелочи до 81% с регулируемыми вязкостными характеристиками.

Заявляемое изобретение имеет ряд существенных отличительных от прототипа признаков. Во-первых, это использование в качестве объекта сульфоэтилирования лигноуглеводных материалов без разделения их на отдельные компоненты. Вовторых, в данном изобретении значительное внимание уделено стадии взаимодействия лигноуглеводных материалов со щелочью, которая проводится как с целью образования алкалипроизводных лигноуглеводных материалов, так и с целью разрушения их морфологической структуры и повышения доступности для действующего реагента гидроксильных групп основных компонентов лигноуглеводных материалов. В-третьих, исключается стадия образования сульфоэтилирующего реагента, т. е. на лигноуглеводные материалы действуют непосредственно смесью 1,2-дихлорлана и сульфита натрия, что значительно сокращает время получения конечного продукта, а также исключает сложности, возникающие на стадии выделения и очистки β-хлорэтилсульфоната натрия из реакционной смеси.

Осуществление изобретения достигается следующим образом. Лигноуглеводный материал в виде опилок (5 г) обрабатывают 28% раствором щелочи по одному из 2-х способов. 1 способ. Обработанные 15 мл щелочи опилки сушат в сушильном шкафу при температуре 80°С в течение 2,5-5,5 ч. 2 способ. Опилки перемешивают с 15 мл щелочи и 100 мл изопропилового спирта при температуре 25-80°С в течение 0,5-5 часов. Активированный таким образом лигноуглеводный материал смешивают с эквимолярной смесью сульфита натрия и 1,2-дихлорэтана (соотношение ОН-группы: реагент =1:0,2-1) и проводят реакцию при температуре кипения (82°С) в течение 0,5-4 ч. Соотношение реагентов выше 1:1 брать нецелесообразно, т.к. увеличение степени замещение уже незначительное.

Для выделения полученного продукта отгоняют непрореагировавший 1,2-дихлорэтан, а также изопропиловый спирт и воду, затем оставшуюся часть подкисляют соляной кислотой для удаления остатков сульфита натрия в виде SO_2 и высушивают. Состав полученных продуктов идентифицируют по данным анализа на содержание серы и по ИК-спектрам. Содержание в конечном продукте хлорида натрия определяют аргентометрическим титрованием.

Продукты с различными свойствами (табл.1-5) получают при варьировании условий щелочной обработки древесины (с растворителем или без, при различной продолжительности и температуре) и условий обработки сульфоэтилирующей смесью (различная продолжительность и соотношение реагентов).

Пример 1.

Навеску древесных опилок массой 5 г обрабатывают 15 мл 28% водного раствора NaOH и сушат в сушильном шкафу при температуре 80°C в течение 2,5 ч, затем смешивают с 12,3 г сульфита натрия и 15 мл 1,2-дихлорэтана, реакцию проводят в

колбе в среде изопропилового спирта (100 мл) при температуре его кипения в течение 3 ч. По окончании реакции продукт охлаждают до комнатной температуры и обрабатывают концентрированной соляной кислотой до $pH\approx5,5$. Свойства полученного продукта описаны в табл.1.

Пример 2.

К навеске древесных опилок массой 5 г добавляют 15 мл 28% водного раствора NaOH и 100 мл изопропилового спирта, нагревают до 80° С и выдерживают при этой температуре в течение 2 ч, затем смешивают с 12,3 г сульфита натрия и 15 мл 1,2-дихлорэтана, реакцию проводят при температуре кипения в течение 3 ч. По окончании реакции продукт охлаждают до комнатной температуры и обрабатывают концентрированной соляной кислотой до $pH\approx5,5$. Свойства полученного продукта описаны в табл.2.

Формула изобретения

Способ сульфоэтилирования материалов на основе целлюлозы, заключающийся в том, что на предварительно активированный материал на основе целлюлозы действуют сульфоэтилирующим реагентом в среде изопропилового спирта, отличающийся тем, что в качестве материала на основе целлюлозы используют лигноуглеводный материал, состоящий из целлюлозы, лигнина и гемицеллюлоз, без разделения его на компоненты, активацию проводят 28% раствором гидроксида натрия при 80-82°C в течение 2 ч, в качестве реагента используется эквимолярная смесь 1,2-дихлорэтана и сульфита натрия, реакцию проводят при температуре кипения изопропилового спирта в течение 4 ч при мольном соотношении реагентов 1:1.

Таблица 1 Свойства продуктов сульфоэтилирования древесины сосны* в зависимости от времени активации (без растворителя)

№ п/п	τ _{акт} , ч.	S, %	(CH ₂) ₂ SO ₃ H, %	α	η/с
1	2,5	5,12	17,44	0,13	1,23
2	3,5	4,40	15,00	0,11	1,19
3	4,5	4,05	13,79	0,10	1,21
4	5,5	3,60	12,26	0,09	1,28

^{*}Активация: T = 80°C в сушильном шкафу

Реакция: τ = 3 ч, T = 82°C, в среде изопропилового спирта

 α — степень превращения: η/с — приведенная вязкость, где η — относительная вязкость щелочного раствора продукта (в 2% NaOH), с — растворимость продукта в 2% растворе NaOH, %

Таблица 2. Свойства продуктов сульфоэтилирования древесины сосны* в зависимости от времени активации (в среде изопропилового спирта)

№	T U	S, %	(CH ₂) ₂ SO ₃ H, %	α	Растворимость, %		/-
n/n					H ₂ O	NaOH (2%)	η/c
1	0,5	3,74	12,74	0,09	63,5	73,0	1,23
2	1	4,62	15,74	0,11	70,4	79,3	1,12
3	2	5,09	17,34	0,13	71,7	81,0	1,09
4	3	4,25	14,48	0,10	66,9	76,7	1,17
5	4	4,02	13,69	0,10	64,1	73,0	1,23
6	5	3,40	11,58	0,08	58,0	67,9	1,34

^{*}Активация: Т = 82°C, в среде изопропилового спирта

Реакция: τ = 3 ч, T = 82°C, в среде изопропилового спирта

Таблица 3 Свойства продуктов сульфоэтилирования древесины сосны* в зависимости от температуры активации

№ T °C	S 0/	(CII.) SO II 9/		Растворимость, %		
п/п	$T_{a\kappa\tau}$, °C	S, %	(CH ₂) ₂ SO ₃ H, %	α	H ₂ O	NaOH (2%)
1	25	0,91	3,10	0,02	1,4	1,5
2	40	3,11	10,59	0,07	3,2	4,6
3	50	3,61	12,30	0,09	12,4	14,8
4	60	4,51	15,36	0,11	28,9	30,7
5	70	4,93	16,79	0,12	48,9	51,2
6	82	5,09	17,34	0,13	71,7	81,0

^{*}Активация: т = 2 ч, в среде изопропилового спирта

Реакция: $\tau = 3$ ч, T = 82°C, в среде изопропилового спирта

Таблица 4 Свойства продуктов сульфоэтилирования древесины сосны* в зависимости от времени реакции

№	7u	S, %	(CH ₂) ₂ SO ₃ H, %	α	Растворимость, %		
п/п					H ₂ O	NaOH (2%)	η/c
1	0,5	1,64	5,59	0,04	28,2	30,4	2,86
2	1	2,62	8,92	0,06	33,5	36,0	2,36
3	2	3,69	12,57	0,09	38,9	41,7	1,98
4	3	5,04	17,17	0,13	53,5	57,2	1,43
5	4	6,04	20,57	0,16	65,6	69,7	1,16

*Активация: T = 82°C, т = 4 ч, в среде изопропилового спирта

Реакция: T = 82°C, в среде изопропилового спирта

Свойства продуктов сульфоэтилирования древесины сосны в зависимости от соотношения реагентов

Таблица 5

No	Соотношение	S, %	(CH ₂) ₂ SO ₃ H, %	α	Растворимость, %		,
π/π	реагентов				H ₂ O	NaOH (2%)	η/c
1	1:0,2	2,12	7,22	0,05	28,0	31,8	3,11
2	1:0,4	2,81	9,57	0,07	42,6	46,4	2,07
3	1:0,6	3,62	12,33	0,09	48,1	54,8	1,73
4	1:0,8	4,12	14,03	0,10	56,5	67,3	1,32
5	1:1,0	5,09	17,34	0.13	71.7	81.0	1.09

*Активация: $\tau = 2$ ч, T = 82°C, в среде изопропилового спирта Реакция: $\tau = 3$ ч, T = 82°C, в среде изопропилового спирта

извещения

MM4A - Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

(21) Регистрационный номер заявки: 2001103239 Дата прекращения действия патента: 08.02.2003 Извещение опубликовано: 20.03.2004БИ: 08/2004