

RU

(11)

2 203 903

(13)

C1

(51) MПК **C08B 11/10** (2000.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2001125750/04, 24.09.2001

- (24) Дата начала отсчета срока действия патента: **24.09.2001**
- (45) Опубликовано: 10.05.2003 Бюл. № 13
- (56) Список документов, цитированных в отчете о поиске: CZ 168967 A, 02.06.1978. SU 757540 A, 23.08.1980. US 2883375 A, 21.04.1957. US 2681846 A, 22.06.1954. US 2580352 A, 25.12.1951.

Адрес для переписки:

656099, г.Барнаул, пр. Ленина, 61 А, комн.801, АГУ, отдел информации, Н.А.Богатыревой

- (71) Заявитель(и):
 - Алтайский государственный университет
- (72) Автор(ы):

Галочкин А.И., Ананьина И.В., Гончарова Ю.А.

(73) Патентообладатель(и):

Алтайский государственный университет

(54) СПОСОБ СУЛЬФОАЛКИЛИРОВАНИЯ ЛИГНОУГЛЕВОДНЫХ МАТЕРИАЛОВ

(57) Реферат:

Изобретение относится к области химической технологии и предназначено для получения натриевых солей сульфоалкиловых эфиров лигноуглеводных материалов, которые могут быть использованы в качестве добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и газовых скважин, для стабилизации цементных растворов в строительной индустрии, в качестве химических реагентов при флотации руд в горнодобывающей промышленности. Лигноуглеводный материал, состоящий из целлюлозы, лигнина, гемицеллюлозы, без его разделения на компоненты активируют 28%-ным раствором гидрооксида натрия при температуре 80-82°С в течение 1 часа. На активированный материал

воздействуют эквимолярной смесью хлорекса- β , β -дихлорэтилового эфира и сульфита натрия, в изопропиловом спирте при температуре кипения изопропилового спирта в течение 2 ч при мольном соотношении реагентов 1:2. Изобретение обеспечивает использование всего лигноуглеводного материала, реализуется возможность безотходной технологии, отпадает необходимость разделения лигноуглеводного материала на лигнин и углеводную часть, удешевляется стоимость конечного продукта, сульфоалкилированные лигноуглеводные материалы обладают более широким спектром свойств. 3 табл.

Изобретение относится к области химической технологии и предназначено для получения натриевых солей сульфоалкиловых эфиров лигноуглеводных материалов, которые могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и газовых скважин, для стабилизации цементных растворов в строительной индустрии, в качестве химических реагентов при флотации руд в горнодобывающей промышленности.

Известны способы сульфоалкилирования крахмала [Pat. USA 2883375. Sulfoalkyl starch ethers / М.К. Fuller // Chem. Absr., 1959. Vol. 53, 21. 20868^d] и целлюлозы [Pat. Swed. 124025. Cellulose ethansulfonic acid and its salts / T. Timell. // Chem. Absr., 1949. Vol. 43, 22. 9446^d; Pat. USA 2681846. Fibrous 2-sulfoalkyl ethers of cellulose / J.D. Guthrie, L.H. Chance, C.L. Hoffpauir // Chem. Absr., 1954. Vol. 48, 20. 12417^f; Pat. USA 2580352. Sulfoethyl ethers of polysaccharides / V.R. Grassie // Chem. Absr., 1952. Vol. 46, 6. 2802^b; Авт. свид. СССР 757540. Способ получения сульфоэтилцеллюлозы / Плиско Е. А. , Нудьга Л.А., Петропавловский Г.А. // РЖХим, 1981. 4Т36П], в которых субстрат предварительно активируют щелочью, растворенной в изопропиловом спирте или воде, с последующим отжимом или без него, смешивают с сульфоалкилирующим агентом. Реакцию проводят при 40-90°С в течение 1-20 часов, в результате чего получают водорастворимые продукты. В качестве сульфоалкилирующего агента используют как β-хлорэтилсульфонат натрия, так и винилсульфокислоту. Степень замещения зависит от температуры и продолжительности реакции, а также от соотношения реагентов.

Наиболее близким по назначению и технической сущности к заявляемому изобретению является способ получения сульфоэтилцеллюлозы, растворимой в воде и водных щелочных растворах [Авт. свид. ЧССР 168967. Способ получения сульфоэтилцеллюлозы, растворимой в воде и водных щелочных растворах / Pastyr J. // РЖХим, 1978. 12Т7П]. Согласно этому способу, сульфоэтилцеллюлозу получают этерификацией целлюлозы β-хлорэтилсульфонатом натрия в щелочной среде в течение 1-2 часов при 65°С при мольном соотношении - глюкозидное звено целлюлозы: β-хлорэтилсульфонат натрия: NaOH = 1:0,5:2,5. Предварительную активацию проводят 40%-ным раствором NaOH в течение 30 мин. Реакцию проводят в среде изопропанола. Получают продукт, растворимый в воде и водных щелочах со степенью замещения 0,5-0,45. Недостатком этого способа является то, что выделение целлюлозы из лигноуглеводных материалов является энергоемким процессом и сопровождается образованием большого количества отходов (до 50%).

В предлагаемом нами изобретении в реакции сульфоалкилирования используется весь лигноуглеводный материал (древесина различных пород и ее отходы, однолетние растения и т.п.), а не только целлюлоза - один из его компонентов. Преимущества в использовании лигноуглеводных материалов заключаются в том, что, во-первых, с точки зрения доступности исходного сырья, древесина, по сравнению с целлюлозой, вне конкуренции, что значительно удешевляет стоимость конечного продукта. Во-вторых, отпадает необходимость разделения лигноуглеводного комплекса на лигнин и углеводную часть, что позволяет

реализовать возможность безотходной технологии. Все основные компоненты лигноуглеводных материалов (целлюлоза, лигнин, гемицеллюлозы) сульфоалкилируются и в дальнейшем используются, что в значительной степени благоприятно отразится на экологической обстановке в лесозаготовительных и лесоперерабатывающих отраслях промышленности, а также на предприятиях химической переработки древесины. В-третьих, сульфоалкилированные лигноуглеводные материалы обладают более широким спектром свойств, чем сульфоалкилцеллюлоза.

Сущность предлагаемого изобретения заключается в том, что лигноуглеводные материалы без разделения их на отдельные компоненты обрабатывают гидроксидом натрия, а затем эквимолярной смесью сульфита натрия и хлорекса (β , β' -дихлордиэтиловым эфиром) в среде изопропилового спирта.

Задачей изобретения является получение натриевых солей сульфоалкилированных материалов, растворимых в воде до 57% и в 2% растворе щелочи до 64% с регулируемыми вязкостными характеристиками.

Заявляемое изобретение имеет ряд существенных отличительных от прототипа признаков. Во-первых, это использование в качестве объекта сульфоалкилирования лигноуглеводных материалов без разделения их на отдельные компоненты. Вовторых, в данном изобретении значительное внимание уделено стадии взаимодействия лигноуглеводных материалов со щелочью, которая проводится как с целью образования алкалипроизводных лигноуглеводных материалов, так и с целью разрушения морфологической структуры лигноуглеводных материалов и повышения доступности для действующего реагента гидроксильных групп основных компонентов лигноуглеводных материалов. В-третьих, в качестве действующего реагента используется смесь сульфита натрия и хлорекса, что позволяет исключить из процесса стадию получения сульфоалкилирующего агента.

Осуществление изобретения достигается следующим образом. Лигноуглеводный материал в виде опилок (5 г) перемешивают с 15 мл 28% щелочи и 100 мл изопропилового спирта при температуре кипения изопропилового спирта в течение 0,5-2,5 часов. Активированный таким образом ЛУМ смешивают с эквимолярной смесью сульфита натрия и хлорекса (соотношение ОН-группы: реагент = 1: 0,25-2) и проводят реакцию при температуре кипения изопропилового спирта (82°C) в течение 0,5-4 ч. Продукт с наибольшей растворимостью получается при соотношении реагентов 1:2 и продолжительности реакции 2 часа.

Для выделения полученного продукта отгоняют непрореагировавший хлорекс, а также изопропиловый спирт и воду, затем оставшуюся часть подкисляют соляной кислотой для удаления остатков сульфита натрия в виде SO_2 и высушивают. Состав полученных продуктов идентифицируют по данным анализа на содержание серы и по ИК-спектрам. Содержание в конечном продукте хлорида натрия определяют аргентометрическим титрованием.

Продукты с различными свойствами (табл. 1-3) получают при варьировании времени щелочной обработки древесины и условий обработки сульфоалкилирующей смесью (различная продолжительность и соотношение реагентов).

Пример

К навеске древесных опилок массой 5 г добавляют 15 мл 28%-ного водного раствора NaOH и 100 мл изопропилового спирта, нагревают до кипения и выдерживают при этой температуре в течение 1,5 ч, затем смешивают с 17,2 г сульфита натрия и 16 мл хлорекса (соотношение реагентов 1:2), реакцию проводят при температуре кипения в течение 2 ч. По окончании реакции продукт охлаждают до комнатной температуры и обрабатывают концентрированной соляной кислотой до $pH\approx2$. Свойства полученного продукта описаны в табл. 2.

Способ сульфоалкилирования материалов на основе целлюлозы, заключающийся в том, что на предварительно активированный материал на основе целлюлозы действуют сульфоалкилирующим реагентом в среде изопропилового спирта, отличающийся тем, что в качестве материала на основе целлюлозы используют лигноуглеводный материал, состоящий из целлюлозы, лигнина, гемицеллюлозы, без его разделения на компоненты, активацию проводят 28%-ным раствором гидрооксида натрия при температуре $80\text{-}82^{\circ}\text{C}$ в течение 1,5 ч, в качестве реагента используют эквимолярную смесь хлорекса- β , β -дихлорэтилового эфира и сульфита натрия, реакцию проводят при температуре кипения изопропилового спирта в течение 2 ч при мольном соотношении реагентов 1:2.

Таблица 1 Влияние времени щелочной предобработки на свойства продуктов сульфоалкилирования древесины березы

Время	S, %	α	Растворимость, %		
щелочной обработки, ч.			NaOH, 2%	H ₂ O	η/с
0,5	5,30	0,16	36,5	28,0	1,50
1,0	5,92	0,19	40,4	32,7	1,44
1,5	6,20	0,20	43,2	36,4	1,37
2,0	6,13	0,20	42,0	34,1	1,40
2,5	5,80	0,18	38,7	30,2	1,46

Мольное соотношение реагентов 1: 1, время синтеза 2 часа, T = 82°C
 α — степень превращения; η/с — приведенная вязкость, где η — относительная вязкость щелочного раствора продукта (в 2% NaOH), с — растворимость продукта в 2% растворе NaOH, %

Таблица 2
Влияние времени основной реакции на свойства продуктов сульфоалкилирования древесины березы

Время	S, %	α	Растворимость, %		22/2
реакции, ч.			NaOH, 2%	H ₂ O	η/с
0,5	4,30	0,12	25,7	19,1	1,85
1	5,05	0,15	30,6	22,8	1,63
2	6,20	0,20	43,2	36,4	1,37
3	7,41	0,26	52,5	45,0	1,19
4	8,11	0,30	64,3	57,4	0,98

^{*} Мольное соотношение реагентов 1 : 1, время щелочной предобработки 1,5 ч., T = 82°C

Таблица 3 Влияние соотношения реагентов в реакции сульфоалкилирования древесины березы на свойства получаемых продуктов

Мольное соот- ношение реаген- тов	S, %	α	Растворимость, %		/-
			NaOH, 2%	H_2O	η/c
1:0,25	1,10	0,03	10,1	2,0	2,80
1:0,5	2,50	0,06	17,8	10,7	1,93
1:0,75	4,85	0,14	29,0	20,1	1,67
1:1	6,20	0,20	43,2	36,4	1,37
1:2	7,81	0,28	58,3	45,0	1,14

^{*}Время реакции 2 ч., T = 82°C, время щелочной предобработки 1,5 ч.

извещения

MM4A - Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

(21) Регистрационный номер заявки: 2001125750 Дата прекращения действия патента: 25.09.2003 Извещение опубликовано: 20.11.2004БИ: 32/2004