2 533 337⁽¹³⁾ C1

(51) MIIK G01N 27/48 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2013125174/28, 30.05.2013

(24) Дата начала отсчета срока действия патента: 30.05.2013

Приоритет(ы):

(22) Дата подачи заявки: 30.05.2013

(45) Опубликовано: 20.11.2014 Бюл. № 32

(56) Список документов, цитированных в отчете о поиске: SU 1728774 A1, 23.04.1992. RU 2324169 C1, 10.05.2008. SU 1608561 A1, 23.11.1990. RU 26656 U1, 10.12.2002. CN 101344501 A, 14.01.2009. CN 101750442 A, 23.06.2010. CN 102435662 A, 02.05.2012.

Адрес для переписки:

656049, г.Барнаул, пр. Ленина, 61, Алтайский государственный университет, отдел охраны интеллектуальной собственности

(72) Автор(ы):

Лейтес Елена Анатольевна (RU), Романова Екатерина Алексеевна (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государтственный университет" (RU)

ယ

(54) СПОСОБ ОПРЕДЕЛЕНИЯ РТУТИ КАТОДНО-АНОДНОЙ ВОЛЬТАМПЕРОМЕТРИЕЙ

(57) Реферат:

Изобретение относится области аналитической химии и может быть использовано для определения микроконцентраций ртути в водных растворах. Способ определения ртути катодно-анодной вольтамперометрией использованием электрода и фоновых растворов включает в себя следующую последовательность действий. Вначале выдерживают стеклоуглеродный электрод в фоновом растворе при потенциале от -0,4 до -0,7 В в течение 120 с, затем переключают на потенциал от +0.4 до +0,5 В и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы с линейной разверткой потенциала от 0,4 В при 100 мВ/с и пиком восстановления ртути, наблюдаемым при потенциале в пределах (-0,05-0,05) В и линейно зависящим от концентрации ртути в водных растворах. Сигнал ртути регистрируют и оценивают методом добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода. Изобретение обеспечивает возможность определения малого количества ртути в водных растворах методом катодно-анодной вольтамперометрии. 2 табл.

S

3

RUSSIAN FEDERATION

¹⁹⁾ RU⁽¹¹⁾ 2 533 337⁽¹³⁾ C1

(51) Int. Cl. *G01N* 27/48 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(21)(22) Application: 2013125174/28, 30.05.2013

(24) Effective date for property rights: 30.05.2013

Priority:

(22) Date of filing: 30.05.2013

(45) Date of publication: 20.11.2014 Bull. № 32

Mail address:

656049, g.Barnaul, pr. Lenina, 61, Altajskij gosudarstvennyj universitet, otdel okhrany intellektual'noj sobstvennosti

(72) Inventor(s):

Lejtes Elena Anatol'evna (RU), Romanova Ekaterina Alekseevna (RU)

(73) Proprietor(s):

Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija "Altajskij gosudartstvennyj universitet" (RU)

(54) METHOD OF MERCURY IDENTIFICATION BY CATHODE-ANODE VOLTAMMETRY

(57) Abstract:

FIELD: chemistry.

SUBSTANCE: method of mercury identification by cathode-anode voltammetry with the application of an electrode and background solutions includes the following succession of actions. First, a glassy carbon electrode is kept in a background solution at a potential from -0.4 to - 0.7 V for 120 s, then it is switched to a potential from + 0.4 to + 0.5 V and is kept for 10 s with the following registration of voltamperogram with a linear involute of the potential in the range from 0.4 V

at 100 mV/s and a peak of the mercury reduction, observed at the potential in ranges (-0.05-0.05) V, and linear dependent on the mercury concentration in water solutions. A mercury signal is registered and evaluated by a method of additives of certified solutions relative to a saturated silver chloride electrode.

<u>က</u> ယ

ယ

ယ

ယ

EFFECT: invention makes it possible to determine a small quantity of mercury in a water solution by the method of cathode-anode voltammetry.

2 tbl

C 7

533337

⊃ ~ Изобретение относится к области аналитической химии, в частности к способам определения ртути вольтамперометрическим методом.

Известен способ вольтамперометрического определения ртути в количественном химическом анализе пищевых продуктов [Э.А. Захарова, В.М. Пичугина, Н.П. Пикула. Методика количественного химического анализа алкогольных и безалкогольных напитков на содержание ртути методом инверсионной вольтамперометрии. МУ 08-47/037. Томск. ТПУ. 1995. - 25 с.]. Методика (аналог) основана на инверсионновольтамперометрическом измерении с линейной разверткой потенциала 30...40 мВ/с в постоянно-токовом режиме регистрации анодного тока в виде пика с максимумом в пределах +0,55...+0,65 В относительно хлоридсеребряного электрода. Перед измерением на рабочий графитовый электрод электроосаждают золото из его 100 мг/дм³ водного раствора HClO₄ (1:1) при потенциале 0,00 В в течение 5 мин. Срок службы рабочего золото-графитового электрода ограничен, требуется специальная программа формирования золота на поверхности графита и определенные условия его хранения.

Из известных технических решений наиболее близким прототипом является определение ртути методом катодной вольтамперометрии (Е.А. Лейтес, Е. А. Романова Изучение электрохимического поведения ртути (II) методом катодной вольтамперометрии // Известия АГУ, \mathbb{N}^3 (41), 2006.)

Определение ртути проводят на фоновых растворах Бриттона-Робинсона (рН=11,20; рН=1,81), NаOH (0,01 M, 0.05 M, 0,1 M, 0,5 M, 1,0 M, 2,6 M), 0,1 M HNO₃, 0,1 M HClO₄ на стеклографитовом электроде с постояннотоковым режимом с последующей регистрацией катодных поляризационных кривых при линейной развертке потенциалов с использованием двухэлектродной ячейки (электрод сравнения - насыщенный хлоридсеребряный, соединенный с ячейкой электролитическим ключом). Вольтамперометрическое определение ртути проводят при E=(0.4-0.5) В, времени накопления 120 с при скорости развертки V=100 мВ/с. В зависимости от фонового раствора и потенциала накопления потенциал пика ртути находится в пределах от -0,55 до -0,60 В на буферном растворе Бриттона-Робинсона (рН=11,20) и NаOH, пик E=0.0 В регистрируется на фоне универсальной буферной смеси, 0,1 М HNO₃, 0,1 М HClO₄, не регистрируется на щелочном фоне. Интервал определяемых концентраций составляет 0,0004 мг/мл - 0,004 мг/мл (2·10⁻⁶ M-2·10⁻⁵ M).

Способ невозможно использовать для определения ртути в водных растворах из-за недостаточной чувствительности.

Сущность предлагаемого изобретения

Предлагаемый катодно-анодный способ определения ртути вольтамперометрией, заключающийся в том что, стеклоуглеродный электрод вначале выдерживают в фоновом растворе при потенциале от -0,4 до -0,7 В (катод) в течение 120 с, затем переключают потенциал на +0.4-+0,5 В (анод) и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы, что изменяет механизм электрохимического процесса и позволяет снизить нижнюю границу определяемых содержаний ртути на 1-2 порядка.

Осуществление изобретения

45

Способ определения ртути катодно-анодной вольтамперометрией осуществляется следующим образом:

в электролизер со сменными стаканчиками, емкостью $10\,\mathrm{m}$ л, помещают $5\,\mathrm{m}$ л фонового раствора Бриттона-Робинсона (pH=1,81), в состав которого входят $0.04\,\mathrm{M}$ раствора фосфорной, уксусной и борной кислот, а также $0.2\,\mathrm{M}$ NaOH, от объема которого в смеси зависит реакция среды или $0.1\,\mathrm{M}$ HClO $_4$ или $0.1\,\mathrm{M}$ HNO $_3$. Затем в течение $3\,\mathrm{m}$ и удаляют

из раствора кислород, пропуская через раствор газообразный азот с содержанием кислорода менее 0,001%.

Для проверки чистоты фона проводят предварительное электрохимическое концентрирование на рабочем стеклоуглеродном электроде при потенциале (-0,4...-0,7) В (катод) относительно насыщенного хлоридсеребряного электрода в течение 120 с. Затем переключают потенциал на +0,4...+0,5 В (анод), выдерживают в течение 10 с, после чего фиксируют вольтамперограмму с линейной разверткой потенциала от +0,4 до +0,5 В при скорости развертки потенциала 100 мВ/с. Отсутствие тока пика, т.е. аналитического сигнала, свидетельствует о чистоте фона.

Затем вводят пробу, содержащую ртуть, и проводят электрохимическое концентрирование на рабочем стеклоуглеродном электроде при потенциале от -0,4 до -0,7) В в течение 120 с. При потенциалах выше -0,4 В аналитические сигналы не значительны, что затрудняет регистрацию. Выбирая более отрицательные потенциалы накопления, при $E_{\text{нак}}$ от -0,7 В до -1,0 В не удается получить воспроизводимые сигналы, а при потенциалах отрицательнее -1,1 В происходит восстановление водорода из воды и величина тока уменьшается. (Таблица 1).

10

Затем переключают потенциал на +0,4...+0,5 В (анод), выдерживают в течение 10 с, что изменяет механизм электрохимического процесса и позволяет снизить нижнюю границу определяемых содержаний ртути на 1-2 порядка, после чего фиксируют вольтамперограмму с линейной разверткой потенциала от +0,4 до +0,5 В при скорости развертки потенциала 100 мВ/с и пиком восстановления ртути, при потенциале в пределах (-0,05...+0,05) В, линейно зависящим от концентрации ртути в водных растворах (Таблица 2). Сигнал ртути регистрируют и оценивают методом стандартных добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода.

Способ катодно-анодного определения ртути вольтамперометрией позволяет снизить нижнюю границу определяемых содержаний на 1-2 порядка и использовать более дешевый стеклоуглеродный электрод.

Величина тока восста	Величина тока восстановления ртути при различных потенциалах электроконцентрирования.			
Е _{нак} , В	h _x , mm	І, мкА		
-0,1	0,4	0,04		
-0,2	2,1	0,21		
-0,3	4	0,40		
-0,4	47	0,94		
-0,5	41	0,82		
-0,6	43	0,86		
-0,7	52	1,04		
-0,8	62	1,24		
-0,9	71	1,42		
-1,0	88	1,76		
-1,1	71	2,84		
-1,2	66	2,64		
-1,3	57	2,28		
-1,4	48	1,92		

	Таблица 2.				
45	Результаты определения ртути (II) на стеклоуглеродном электроде методом стандартных добавок				
		Введено	Найдено		
	Фоновый раствор	$C_{Hg}^{+2} \cdot 10^7$	$C_{Hg}^{+2} \cdot 10^7$	Sr	
		(моль/л)	(моль/л)		

RU 2533337 C1

Буферный раствор Бриттона-Робинсона	0,8	0,86±0,04	0,03
Буферный раствор Бриттона-Робинсона	5,0	5,20±0,09	0,02
0.1 M HClO ₄ ,	0,3	0,32±0,03	0.01
0.1 M HClO ₄ ,	2,0	2,10±0,05	0.02
0.1 M HNO ₃ ,	4,0	3,90±0,20	0.04
0.1 M HNO ₃ ,	6,0	6,20±0,10	0.03

Формула изобретения

Способ определения ртути катодно-анодной вольтамперометрией, включающий в себя определение ртути вольтамперометрией с использованием электрода и фоновых растворов, отличающийся тем, что стеклоуглеродный электрод вначале выдерживают в фоновом растворе при потенциале от -0,4 до -0,7 В в течение 120 с, затем переключают на потенциал от +0.4 до +0,5 В и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы и пиком восстановления ртути.

Стр.: 5