МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» МЕЖДУНАРОДНЫЙ ИНСТИТУТ ЭКОНОМИКИ, МЕНЕДЖМЕНТА И ИНФОРМАЦИОННЫХ СИСТЕМ КАФЕДРА «МЕЖДУНАРОДНАЯ ЭКОНОМИКА, МАТЕМАТИЧЕСКИЕ МЕТОДЫ И БИЗНЕС-ИНФОРМАТИКА»

ПОСТРОЕНИЕ СТРУКТУРНОЙ МОДЕЛИ В МЕТОДОЛОГИИ IDEF0 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

(для бакалавров, обучающихся по направлениям подготовки: 38.03.05 «Бизнес-информатика», 09.03.03 «Прикладная информатика»)

ББК 22.1+32.81

УДК 51: 004

5 - 183

Байкин А.А., Вдовкина Е.Г., Шаповалова С.В.

Построение структурной модели в методологии IDEF0. Методические указания

по выполнению лабораторных работ, для бакалавров, обучающихся по направлениям

подготовки: 38.03.05 «Бизнес-информатика», 09.03.03 «Прикладная информатика».

Рецензент: Мамченко О.П., д.э.н., профессор

Проведение самостоятельного моделирования бизнес-процессов в среде Ramus

используется при написании курсовых и выпускных квалификационных работ

является частью учебного плана студентов дневного и заочного отделений

Международного института экономики, менеджмента и информационных систем

(МИЭМИС). Методические указания имеют целью оказать студентам методическую помощь при выполнении аналитической части исследования курсовых и дипломных

работ в направлении моделирования и анализа бизнес-процессов на основе

использования современных компьютерных технологий.

Методические указания включают в себя теоретический материал, используемый

при структурном моделировании бизнес-процессов, порядок установки программного

инструментария и использования его для выполнения стандартных заданий

моделирования и анализа бизнес-процессов среде Ramus.

ОБСУЖДЕНО

Протокол заседания кафедры

№8 от 25.03. 2019г.

Зав. кафедрой д.э.н., профессор Мамченко О.П.

(а) Алтайский государственный

университет, кафедра

«Международная экономика,

математические методы и бизнес-

информатика»,2019

Содержание

1 Общие сведения о программном средстве структурного моделирования	
процессов Ramus	4
2 Установка RAMUS для ОС MS Windows.	5
3 Построение модели IDEF0	6
Упражнение 1. Создание контекстной диаграммы	6
Упражнение 2. Создание диаграммы декомпозиции	8
Упражнение 3. Создание диаграммы декомпозиции второго уровня	11
Литература	13

1 Общие сведения о программном средстве структурного моделирования процессов Ramus

Ramus создан с целью стать основным инструментом бизнес-аналитиков в проектах по построению или реорганизации систем управления предприятием. К таковым могут относиться: проекты по реинженирингу бизнес-процессов, проекты внедрения процессного управления, проекты построения системы менеджмента качества, проекты построения системы управления знаниями и т.п. **Ramus** имеет смысл использовать в достаточно больших и сложных организациях, дабы он мог проявить свои преимущества в полной мере.

Основными возможностями Ramus являются:

- Моделирование процессов (согласно методологий IDEF0 и DFD);
- Разработка систем классификации и кодирования предприятия с внутренними перекрёстными связями, которая также тесно увязывается и с моделями процессов;
- Формирование отчётности по моделям и системе классификации, в том числе и отчётности в форме такой регламентирующей документации как должностные инструкции и регламенты процессов;
- Генерация сайта, который призван обеспечить доступ к данным моделей процессов, системы классификации и кодирования а также к разнообразнейшей отчётности через веб-интерфейс.

Ramus имеет редактор диаграмм **IDEF0** и **DFD** эргономичность которого находится на уровне не ниже чем у аналогичных продуктов имеющих схожие редакторы. Это проявляется в более лёгкой и быстрой навигации по модели, в более «умном» поведении объектов диаграмм, в поддержке шаблонов диаграмм, в возможности быстрого исправления допущенных ошибок, в том числе и в возможности отмены действий.

Так как, модели процессов реальных предприятий могут содержать многие тысячи разнообразнейших объектов (документы, персонал, функции и т.д.), то в **Ramus** предусмотрена возможность упорядочено хранить информацию об этих объектах в виде системы классификаторов. Классификация объектов значительно упрощает поиск и обработку информации об объектах модели, а так же и об объектах непосредственно на диаграммах процессов не представленных, но, так или иначе, относящихся к процессам предприятия. Каждый элемент системы классификации, кроме собственно названия, может иметь дополнительные атрибуты, в которых можно упорядочено хранить разнообразнейшую информацию об объекте.

Стоит отметить, что для создания качественной и информативной отчётности по модели, крайне необходимо, чтобы вся информация проекта содержалась упорядочено в виде системы классификации.

Для генерации отчётности в **Ramus** присутствует редактор отчётности. Наличествует поддержка шаблонов отчётов в формате **XML** которые могут быть экспортированы из файла или импортированы в файл.

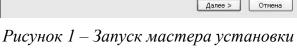
Совокупность моделей, классификаторов, матричных проекций и отчётов имеющих отношение к одному и тому же предприятию в дальнейшем будем называть **Проект**.

Просмотр всей информации **Проекта** может быть осуществлён через веббраузер. Для этого разработан веб-сервер который выводит информацию **Проекта** в виде набора **HTML** страниц, или же, попросту говоря, в виде сайта. Это существенно упрощает использование и развёртку **Ramus**, так как избавляет от необходимости установки клиентской версии **Ramus** на **APM**ах пользователей которые имеют доступ только на чтение информации **Проекта**. Всей или некоторой информации Проекта, что определяется настройками прав доступа.

Отметим также, что к любому элементу системы классификации и кодирования можно прикреплять файлы, которые будут доступны для скачивания с сайта **Проекта**. Использование технологии **Java** при реализации программных модулей, позволяет использовать **Ramus** под разными видами операционных систем и аппаратных платформ (**MS Windows**, **Linux**, **Mac OS**, и т.д.).

Ramus может использоваться в файловом (локальном) и сетевом вариантах. Сетевая версия **Ramus** позволяет распределять доступ пользователей к данным. Сетевая версия **Ramus** использует стандартизированные протоколы обмена данными, что позволяет интегрировать **Ramus** с другими системами. Но и без использования сетевой версии можно разделить работу над **Проектом** между несколькими разработчиками путём использования функции расщепления **Проекта**.

В **Ramus** включена поддержка нескольких языков графического интерфейса пользователя. Язык интерфейса зависит от региональных настроек операционной системы.


Кроме всего прочего, **Ramus** поддерживает возможность расширения функциональности с использованием сценариев на языке программирования **JavaScript**.

2 Установка RAMUS для ОС MS Windows.

Для работы программного обеспечения, рекомендуется установить последнюю версию Java с сайта http://java.com.

- 1. Запустите установку: выберите ramus-educational-1.1.1-setup.exe (рисунок 1).
- 2. Разработчики программы приветствуют вас, выберите Далее.
- 3. В окне License Agreement предлагается ознакомиться с условиями лицензионного соглашения, выберите Принимаю (рисунок 2).

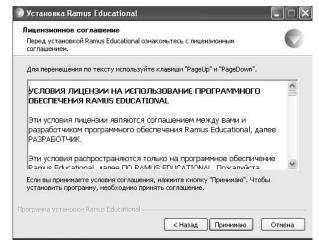


Рисунок 2 – Условия лицензии

4. В окне Выбор папки установки выберите по умолчанию, нажмите Далее (рисунок 3).

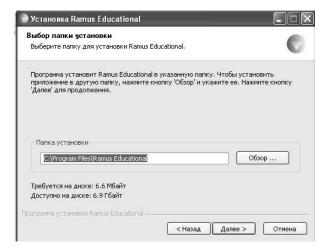
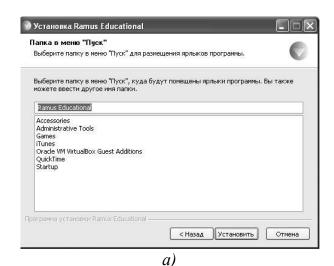



Рисунок 3 – Выбор папки установки

5. В окне **Папка** в меню Пуск выберите по умолчанию, нажмите **Установить** (рисунок 4 а, б).



Рисунок 4 – Завершение установки

6. После окончания установки нажмите Далее, и Готово.

3 Построение модели IDEF0

Упражнение 1. Создание контекстной диаграммы

1. После запуска программы на экране появится окно начала работ (рисунок 5). Выберите опцию "Создать" и нажмите "ОК".

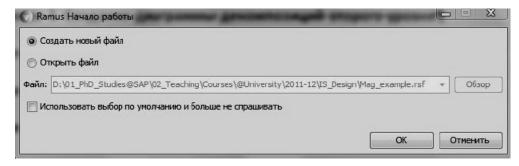


Рисунок 5 – Диалоговое окно начала работы в Ramus

- 2. Внесите имя автора, название проекта, название модели и выберите опцию "IDEF0". На следующем шаге укажите, что модель используется "отделом стратегического планирования и развития".
 - В описании проекта укажите "Это учебная модель, описывающая деятельность компании", перейдите к следующему шагу.
- 3. Раздел "классификаторы" оставьте незаполненным и нажмите "Дальше".
- 4. В следующем диалоговом окне нажмите "**Окончить**" и перейдите к *рабочему* интерфейсу программы.
- 5. Через меню Диаграмма -> Свойства модели можно отредактировать метаданные модели, а именно: название модели, описание, место ее использования.
- 6. Активируйте окно модели, кликнув на область моделирования. Создайте *контекстную диаграмму*, нажав на кнопку ...
- 7. Перейдите в режим редактирования контекстной диаграммы, нажав правой кнопкой мыши на объекте и выбрав опцию "Редактировать активный элемент". В закладке "Название" введите "Деятельность компании". Во вкладке "Описание" введите "Текущие бизнес-процессы компании". Обратите внимание, что вкладка "Описание" может быть недоступна в версии RAMUS Educational
- 8. Создайте стрелки на контекстной диаграмме в соответствие с информацией, приведенной в таблице 1. Для создания стрелок необходимо перейти в режим построения стрелок с помощью кнопки →, навести курсор на исходную точку стрелки (левая, верхняя и нижняя граница области построения модели или правая граница контекстной диаграммы), после того, как область будет подсвечена черным цветом, кликнуть один раз и аналогичным образом обозначить конец стрелки (правая, верхняя и нижняя граница контекстной диаграммы или правая граница области построения модели). Перемещать стрелки и их названия можно по принципам стандартного механизма drag&drop.

Таблица 1 — Описание стрелок контекстной диаграммы						
НАЗВАНИЕ	"СМЫСЛОВАЯ НАГРУЗКА"	ТИП				
Бухгалтерская	Оформление счетов, оплата счетов, работа с	Механизм				
система	заказами					
Звонки клиентов	Запросы информации, заказы, техническая	Вход				
	поддержка и т.д.					
Правила и	Правила продаж, инструкции по сборке,	Управляющее				
процедуры	процедуры тестирования, критерии	воздействие				
	производительности и т.д.					
Проданные	Настольные и портативные компьютеры	Выход				
продукты						

На рисунке 5 представлен результат построения контекстной диаграммы.

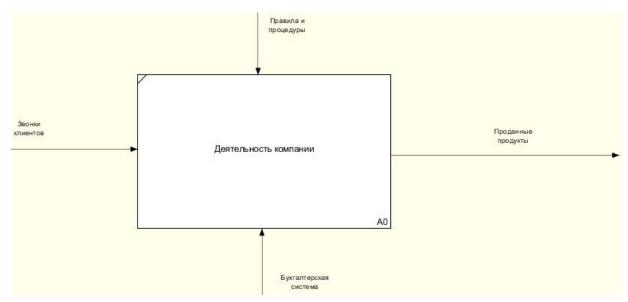


Рисунок 5 – Контекстная диаграмма (результат выполнения Упражнения 1) Упражнение 2. Создание диаграммы декомпозиции

- Выберите кнопку перехода на уровень ниже 🔳 в панели инструментов. 1.
- 2. В диалоговом окне укажите число работ на диаграмме нижнего уровня - "3", а нотацию декомпозиции - IDEF (рисунок 6), затем нажмите " \mathbf{OK} ". Автоматически будет создана диаграмма декомпозиции.
- 3. Правой кнопкой мыши щелкните по 1-ой работе, выберите "Редактировать активный элемент" и на вкладке "Название" укажите имя работы. Повторите операцию для всех трех работ, а также внесите их описание в соответствующую вкладку на основе данных таблицы 2. Обратите внимание, что вкладка "Описание" может быть недоступна в версии RAMUS *Educational*.

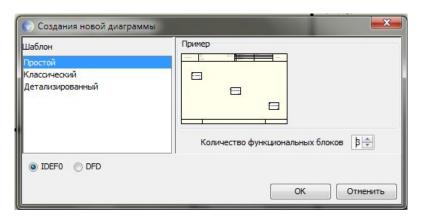


Рисунок 6 – Диалоговое окно декомпозиции работ

Таблица 2 – Описание работ декомпозиции первого уровня					
НАЗВАНИЕ	ОПИСАНИЕ				
Продажи и маркетинг	Телемаркетинг, презентации, выставки				
Сборка и тестирование	Сборка и тестирование настольных и портативынх				
компьютеров	компьютеров				
Отгрузка и получение	Отгрузка заказов клиентам и получение компонентов от				
	поставщиков				

4. Перейдите в режим рисования стрелок. Произведите связывание граничных стрелок с функциональными объектами, как показано на 7. Для связывания граничных стрелок наводите курсор на сами стрелки, а не на границы области построения моделей.

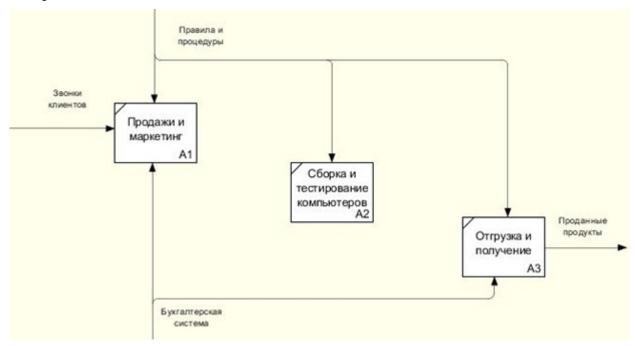
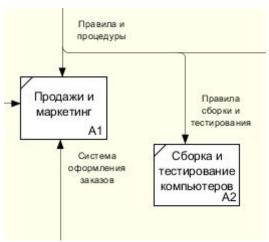



Рисунок 7 – Связывание граничных стрелок на диаграмме декомпозиции А0

Правой кнопкой мыши щёлкните по ветви стрелки "Сборка и тестирование компьютеров", переименуйте ее в "Правила сборки и тестирования" (рисунок 8).

5. Правой кнопкой мыши щелкните по ветви стрелки механизма работы "Продажи и маркетинг" и переименуйте ее в "Система оформления заказов" (рисунок 8)

Pисунок 8- Π рисвоение названий ветвям стрелок диаграммы декомпозиции A0

6. Создайте новые внутренние стрелки, как показано на рисунке (рисунок 9).

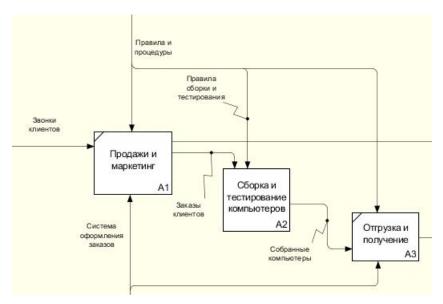
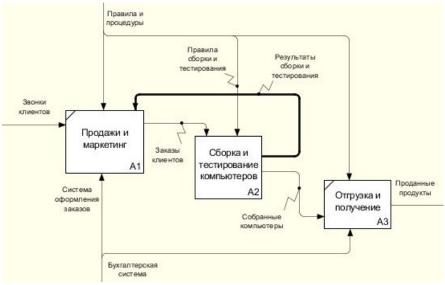



Рисунок 9 – Внутренние стрелки диаграммы декомпозиции А0

7. Создайте стрелку обратной связи (по управлению) "Результаты сборки и тестирования", идущую от работы "Сборка и тестирование компьютеров" к "Продажи и маркетинг". Измените стиль стрелки - толщину (правая кнопка мыши -> "Редактировать активный элемент" -> вкладка "Линия"). Методом drag&drop возможно переносить стрелки и их названия. При необходимости возможно установить "тильду" (опция контекстного меню при нажатии на стрелке правой кнопкой мыши) для явной связи стрелки и подписи к ней (рисунок 10).

Pисунок 10-Pезультаты редактирования стрелок на диаграмме декомпозиции A0

8. Создайте новую граничную стрелку "Маркетинговые материалы", выходящую из работы "Продажи и маркетинг" Эта стрелка автоматически не попадает на диаграмму верхнего уровне и имеет квадратные скобки у окончания . Щелкните правой кнопкой мыши по квадратным скобкам и выберите в контекстном меню "Туннель" (рисунок 11) одну их двух опций: "Создать стрелку" и "Обозначить туннель круглыми скобками", в нашем случае - первый вариант.

Рисунок 11 – Результат туннелирования стрелок

Упражнение 3. Создание диаграммы декомпозиции второго уровня

Декомпозируем работу "**Сборка и тестирование компьютеров**". В результате проведенного анализа получена следующая информация о процессе:

Производственный отдел получает заказы от отдела клиентов по мере их поступления.

Диспетчер координирует работу сборщиков, сортирует заказы, группирует и дает указания на отгрузку компьютеров, когда они готовы.

Каждые 2 часа диспетчер группирует заказы - отдельно для настольных компьютеров и ноутбуков - и направляет их на участок сборки.

Сотрудники участка сборки собирают компьютеры согласно спецификациям заказа и инструкциям по сборке. Когда группа компьютеров, соответствующая группе заказов, собрана, она направляется на тестирование. Тестировщик тестируют каждый компьютер и, в случае необходимости, заменяет неисправные компоненты.

Тестировщики направляют результаты тестирования диспетчеру, который на основании этой информации принимает решение о передаче компьютеров, соответствующих группе заказов, на отгрузку.

1. На основе информации из таблиц 3 и 4 внесите новые работы и стрелки на *диаграмму декомпозиции* А2.

Таблица3 – Описание функциональных блоков диаграммы декомпозиции A2					
НАЗВАНИЕ	ОПИСАНИЕ				
ФУНКЦИОНАЛЬНОГО БЛОКА					
Отслеживание расписания и	Просмотр заказов, установка расписания выполнения				
управление сборкой и	заказов, просмотр результатов тестирования,				
тестирование	формирования групп заказов на сборку и отгрузку				
Сборка настольных компьютеров	Сборка настольных компьютеров в соответствии с				
	инструкциями и указаниями диспетчера				
Сборка ноутбуков	Сборка ноутбуков в соответствии с инструкциями и				
	указаниями диспетчера				
Тестирование компьютеров	Тестирование компьютеров и компонентов. Замена				
	неработающих компонентов.				

Таблииа 4. О	писание стрелок диаг	граммы деко	мпозиции А2	
Диспетчер	Персонал	Механизм	Отслеживание расписания и	Механизм
, ,	производственного	(ветка	управление сборкой и	
	отдела	стрелки)	тестированием	
Заказы	Граница диаграммы	Управляю	Отслеживание расписания и	Управляю
клиентов	- Panning Anar Panning	щее	управление сборкой и	щее
10111011102		воздействи	тестированием	воздейств
		e		ие
Заказы на	Отслеживание	Выход	Сборка настольных	Управляю
настольные	расписания и	, ,	компьютеров	щее
компьютеры	управление сборкой			воздейств
1	и тестированием			ие
Заказы на	Отслеживание	Выход	Сборка компьютеров	Управляю
ноутбуки	расписания и			щее
	управление сборкой			воздейств
	и тестированием			ие
Компоненты	Туннелированная ст	Вход	Сборка настольных	Вход
	релка		компьютеров	
			Сборка ноутбуков	Вход
			Тестирование компьютеров	Вход
Настольные	Сборка настольных	Выход	Тестирование компьютеров	Вход
компьютеры	компьютеров			
Ноутбуки	Сборка ноутбуков	Выход	Тестирование компьютеров	Вход
Персонал	Туннелированная ст	Механизм	Сборка настольных	Механизм
производств	релка		компьютеров	
енного			Сборка ноутбуков	Механизм
отдела				
Правила	Границы диаграммы		Сборка настольных	Управляю
сборки и			компьютеров	щее
тестировани			Сборка ноутбуков	воздейств
Я			Тестирование компьютеров	ие
Результаты	Сборка настольных	Выход	Граница диаграммы	Выход
сборки и	компьютеров			
тестировани	Сборка ноутбуков			
Я	Тестирование			
	компьютеров			
Результаты	Тестирование	Выход	Отслеживание расписания и	Вход
тестировани	компьютеров		управление сборкой и	
e			тестированием	
Собранные	Тестирование	Выход	Граница диаграммы	Выход
компьютеры	компьютеров			
Тестировщи	Персонал		Тестирование компьютеров	Механизм
κ	производственного			
	отдела			
Указание	Отслеживание	Выход	Тестирование компьютеров	Управляю
передать	расписания и			щее
компьютеры	управление сборкой			воздейств
на отгрузку	и тестированием			ие

2. Произведите туннелирование и связку граничных стрелок, если это

необходимо. Результат выполнения упражнения 3 представлен на рисунке 12.

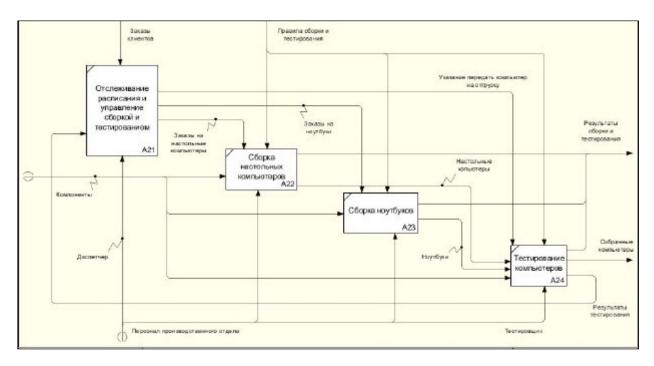


Рисунок 12 – Результат декомпозиции процесса Сборка и тестирование

Литература

- 1. Грекул, В. И. Проектирование информационных систем: учебник и практикум для академического бакалавриата / В. И. Грекул, Н. Л. Коровкина, Г. А. Левочкина. М.: Издательство Юрайт, 2017. 385 с. Серия: Бакалавр. Академический курс.
- 2. Проектирование информационных систем: учебник и практикум для академического бакалавриата / под ред. Д. В. Чистова. М.: Издательство Юрайт, 2016. 258 с. Серия: Бакалавр. Академический курс.
- 3. Системная учебная практика [Электронный ресурс]: методические указания по учебной практике / сост.: Миндалёв И.В. Красноярск, Краснояр. гос. аграр. ун-т., 2013, 75 с.