Геометрический семинар — некоторые приемы развития познавательной самостоятельности студентов

Т.В. Саженкова, А.Н. Саженков АлтГУ, г. Барнаул

Для успешности учебно-познавательного процесса важно постоянное побуждение обучаемых к активному участию в изучении материала.

При традиционной форме «лекция – практическое занятие» происходит, зачастую, достаточно пассивное восприятие теоретической составляющей курса на лекции, а затем, уже отсроченное, приложение этого материала к решению задач на практическом занятии.

Лучшему усвоению изучаемого предмета способствует участие учащегося в самом процессе теоретических построений.

Этого можно достигать разбивкой теоретического материала на шаги-задачи, предлагаемые к решению в процессе самого занятия, и подводящие к появлению соответствующих понятий и выводов.

Приведем фрагменты построения такого изложения по одной из тем геометрического семинара УИРС на II курсе МФ.

Тема «**Теорема Жордана**»: Замкнутая несамопересекающаяся ломаная разбивает плоскость на две связные области.

Пусть l — несамопересекающаяся ломаная, $A_1,A_2,...,A_n$ — её вершины, $x_1,x_2,...,x_n$ — её звенья.

1. Докажите, что для произвольной точки плоскости A существует точка $B \in I$ такая, что $|AB| \leq |AC|$ для любой точки $C \in I$.

Опр. Величину |AB|, определённую в задаче 1, называют расстоянием от точки A до ломаной l и обозначают $\rho(A, l)$.

2. Докажите, что если точка C лежит внутри отрезка AB, то $\rho\left(C,l\right)=\left|CB\right|$, и B является единственной со свойством $\rho\left(C,l\right)=\left|CB\right|$.

Обозначение: $l(\varepsilon) = \{A : \rho(A, l) \le \varepsilon\}$.

- **3.** Пусть x и y непересекающиеся отрезки. Докажите, что существует $\varepsilon > 0$, такое, что множества $x(\varepsilon)$ и $y(\varepsilon)$ не пересекаются.
- **4.** Пусть x_{k-1} , x_k , x_{k+1} три подряд идущих звена несамопересекающейся ломаной l. Докажите существование $\varepsilon > 0$, такого, что множества $x_k\left(\varepsilon\right)$ и $x_j\left(\varepsilon\right)$ $\left(j \neq k-1,k,k+1\right)$ не пересекаются.

- **Опр.** ε шевелением ломаной $A_1A_2...A_m$ назовём ломаную $B_1B_2...B_m$, для которой $|A_kB_k| \le \varepsilon$ (k=1,2,...,m).
- 5. Найти ГМТ всех ломаных, являющихся ε шевелением ломаной l.
- 6. Докажите существование $\varepsilon>0$, такого, что при δ шевелениях несамопересекающаяся l остаётся несамопересекающейся, где $\delta\leq \varepsilon$.
- **Опр.** Для отрезков a и b величина J(a,b)=0, если a и b не пересекаются. J(a,b)=1, если a и b пересекаются во внутренних точках. Иначе, J(a,b), называемая **индексом пересечения** отрезков a и b, неопределена.

Пусть l и m —несамопересекающиеся замкнутые ломаные. Величину $J(l,m) = \sum J(a,b) \pmod 2$, где a и b — всевозможные отрезки, принадлежащие l и m, для которых определено J(a,b), называют индексом пересечения ломаных l и m.

- 7. Для несамопересекающихся замкнутых l и m докажите, что малым шевелением l' ломаной l можно добиться, что звенья l' и m не имеют пары параллельных, l' несамопересекающаяся замкнутая и J(l,m) = J(l',m).
- **8.** Пусть несамопересекающиеся замкнутые *l* и *m* не имеют пары параллельных звеньев. Будем передвигать *l* параллельным образом вдоль направления, не параллельного звеньям ломаных. Докажите возможность такого движения с сохранением индекса пересечения ломаных.

Заметьте, что нами доказана теорема: Индекс пересечения двух несамопересекающихся замкнутых ломаных равен нулю.

Опираясь на полученный факт, аналогичным дроблением студенты побуждаются далее к доказательству и самой теоремы Жордана.

Центральные расширения четырехмерных симплектических групп Ли

Я.В. Славолюбова КемГУ, г. Кемерово

В работах [5], [6] получен список вещественных разрешимых неабелевых четырехмерных алгебр Ли. Он содержит 17 симплектических алгебр Ли.