Предложение 1. Полином [x,y]z образует базис тождеств векторного пространства \vec{A}_1 .

Предложение 2. Полином x[y,z] образует базис тождеств векторного пространства \vec{A}_2 .

Несмотря на то, что \vec{A}_1 и \vec{A}_2 – КБ-пространства, \vec{A} таковым не является. А именно, справедлива

Теорема. Векторное пространство \vec{A} является НКБ-пространством с базисом тождеств

$$\{[x, y][u, v], x[y, u]v, [x, y]z_1z_2...z_k[u, v] | k = 1, 2, ...\}$$

Замечание. Алгебра $A = A_1 \oplus A_2$ конечно базируема с базисом тождеств $\{[x,y][u,v],x[y,u]v\}$.

Библиографический список

- 1. Исаев И.М. Существенно бесконечно базируемые многообразия алгебр // Сибирский математический журнал. 1989. Т. 30, № 6.
- 2. Львов И.В. Конечномерные алгебры с бесконечными базисами тождеств // Сибирский математический журнал. 1978. Т. XIX, № 1.
- 3. Мальцев Ю.Н., Парфенов В.А. Пример неассоциативной алгебры, не допускающей конечного базиса тождеств // Сибирский математический журнал. -1977. -T. XVIII, № 6.
- 4. Полин С.В. О тождествах конечных алгебр // Сибирский математический журнал. 1976. Т. XVII, № 6.
- 5. Размыслов Ю.П. О конечной базируемости тождеств матричной алгебры второго порядка над полем характеристики нуль // Алгебра и логика. 1973. Т. 12, № 1.
- 6. Isaev I.M. Finite algebras with no independent basis of identities // Algebra Universalis. 1997. Vol. 37.

О квазимногообразиях Леви экспоненты p^s

В.В. Лодейщикова АлтГТУ, г. Барнаул

Для произвольного класса M групп обозначим через L(M) класс всех групп G, в которых нормальное замыкание любого элемента принадлежит M. Класс L(M) групп называется классом Леви, порожденным M. Пусть qM – квазимногообразие, порожденное классом M; N_C – многообразие нильпо-

тентных групп ступени \leq c; $F_n(M)$ – свободная группа в квазимногообразии M ранга n.

Зафиксируем простое число p, $p \neq 2$, и натуральное число s, $s \geq 2$. Пусть R_{p^s} — многообразие групп, заданное в N_2 тождествами:

$$(\forall x)(\forall y)([x,y]^p=1), (\forall x)(x^{p^s}=1).$$

В данной работе найдено описание класса Леви, порожденного квазимногообразием $qF_2\left(R_{_{D}{^s}}\right)$.

Зафиксируем натуральное число $n, n \ge 2$. Пусть R_{2^n} — многообразие групп, заданное в N_2 формулами:

$$(\forall x)(\forall y)([x, y]^2 = 1), (\forall x)(x^{2^n} = 1).$$

Обозначим через R квазимногообразие групп, задаваемое в R_{2^n} квазитождеством $(\forall x)(\forall y)(x^{2^{n-1}}=1 \to [x,y]=1)$.

Теорема 1. Класс L(R) совпадает с многообразием R_{2^n} .

Следствие 1. Класс $L\left(qF_2\left(R_{2^n}\right)\right)$ совпадает с многообразием R_{2^n} .

Следствие 2. Множество квазимногообразий K из R_4 таких, что $L(K) = R_4$, континуально.

Теорема 2. Существует класс K из R_8 такой, что во всякой группе из K централизатор любого элемента, не принадлежащего центру этой группы, – абелева подгруппа, но класс L(qK) не является нильпотентным ступени ≤ 2 .

О доминионе полной подгруппы нильпотентной группы без кручения

С.А. Шахова

АлтГУ, г. Барнаул

Понятие доминиона возникло в [1] и изучалось в различных классах универсальных алгебр, в том числе и в квазимногообразиях [2].

Доминионом подгруппы H группы G в квазимногообразии групп \mathbb{N} , обозначаемом $\mathrm{dom}_G^\mathbb{N}(H)$, называется множество элементов $g \in G$ таких, что