новок (G,Ω) вложима в последовательное сплетение ее абелевых фактор-групп подстановок [1].

Теорема. Пусть (G,Ω,ϕ) — транзитивная m-группа подстановок. Тогда (G,Ω,ϕ) вложима в сплетение ее абелевых фактор-групп подстановок.

Следствие. Произвольная разрешимая m-группа ступени n аппроксимируется сплетениями своих абелевых фактор-групп.

Библиографический список

- 1. Kopytov V.M., Medvedev N.Ya. The theory of lattice-ordered groups. Dordrecht; Boston; London: Kluwer Acad. Publ., 1994.
- 2. Зенков А. В. Сплетения групп монотонных подстановок // Сиб. матем. ж., 52, № 6 (2011), 1264–1270.

УДК 512.552.18

О группе обратимых элементов конечных локальных колец с 4-нильпотентным радикалом Джекобсона

Е.В. Журавлев АлтГУ, г. Барнаул

Все кольца, рассматриваемые далее, являются конечными, ассоциативными и содержат единицу. Обозначим через J = J(R) и R^* соответственно радикал Джекобсона и мультипликативную группу обратимых элементов кольца R, $F = GF(p^r)$ – конечное поле и \mathbb{Z}_n – кольцо классов вычетов по модулю n. Кольцо R называется локальным, если R/J = F — поле. Все делители нуля локального кольца образуют радикал J, и всякий элемент кольца является либо обратимым, либо нильпотентным. Одним из примеров локальных колец являются так называемые кольца Галуа $GR(p^{nr}, p^n)$, представимые в виде $\mathbb{Z}_{p^n}[x]/(f)$, где p — простое число, f — унитарный многочлен степени которого при естественном гомоморфизме $\mathbb{Z}_{p^n}[x]/(f) \to \mathbb{Z}_p[x]/(f)$ является неприводимым над \mathbb{Z}_p многочленом. В частности, $GR(p^n, p^n) = \mathbb{Z}_{p^n}$ и $GR(p^r, p) = GF(p^r)$. В работе [1] полностью описана структура мультипликативной группы колец Галуа и доказано, что мультипликативная группа обратимых элементов \boldsymbol{R}^* произвольного коммутативного конечного локального кольца \boldsymbol{R}

является прямым произведением циклической группы $\langle b \rangle$ порядка p^r-1 и группы 1+J .

Теорема. Пусть R- конечное коммутативное локальное кольцо характеристики p,

$$\dim_F J/J^2 = 2$$
, $\dim_F J^2/J^3 = 2$, $\dim_F J^3 = 1$, $J^4 = 0$.

Тогда

1) если
$$p=2$$
 , то $R^*\cong \mathbb{Z}_{2^r-1} imes \left(\mathbb{Z}_4^r\right)^2 imes \mathbb{Z}_2^r$ или $R^*\cong \mathbb{Z}_{2^r-1} imes \mathbb{Z}_4^r imes \left(\mathbb{Z}_2^r\right)^3$;

2) если
$$p=3$$
 , то $R^*\cong \mathbb{Z}_{3^r-1}\times \mathbb{Z}_9^r\times \left(\mathbb{Z}_3^r\right)^3$ или $R^*\cong \mathbb{Z}_{3^r-1}\times \left(\mathbb{Z}_3^r\right)^5$;

3) если
$$p>3$$
 , то $R^*\cong \mathbb{Z}_{p^r-1} imes \left(\mathbb{Z}_p^r\right)^5$.

Доказательство теорем основано на результатах классификации конечных локальных колец, полученных автором в работах [2, 3].

Библиографический список

- 1. Raghavedran R. Finite associative rings // Compositio Math. 1969. V. 21. P. 195–229.
- 2. Журавлев Е.В. Локальные кольца порядка p^6 с 4-нильпотентным радикалом Джекобсона // Сибирские электронные математические известия [Электронный ресурс]. 2006. Т. 3. С. 15—59. Режим доступа: http://semr.math.nsc.ru.
- 3. Журавлев Е.В. О классификации некоторых классов конечных коммутативных локальных колец // Сибирские электронные математические известия [Электронный ресурс]. 2015. Т. 12. С. 625–638. Режим доступа: http://semr.math.nsc.ru.

УДК 512.552.12

О кольцах целых чисел квадратичных полей

Е.В. Журавлев, В.Н. Токарев АлтГУ, г. Барнаул; АлтГТУ, г. Барнаул

Рассмотрим кольцо $\mathbb{Z}\Big[\sqrt{n}\,\Big] = \Big\{a + b\sqrt{n} \mid a,b \in \mathbb{Z}\Big\}$, где n- такое простое число, что $\mathbb{Z}\Big[\sqrt{n}\,\Big]$ — евклидово кольцо и в кольце \mathbb{Z} разрешимо отрицательное уравнение Пелля $x^2-y^2n=-1$. Пусть $\mathbb{Z}^*\Big[\sqrt{n}\,\Big]$ — группа