МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ВВЕДЕНИЕ В ОБЩУЮ ХИМИЮ

УЧЕБНОЕ ПОСОБИЕ

Допущено Отделением химии УМО по классическому университетскому образованию РФ в качестве учебного пособия для студентов высших учебных заведений, обучающихся по естественно-научным специальностям

УДК 54(075.8) ББК 24.1я73 В 24

Рецензенты 1-го издания (2003 г.):

д.х.н., профессор, заслуженный химик РФ *Ю.А. Карбаино*в (Томский политехнический университет); д.х.н., профессор *Ф.Г. Унгер* (Томский государственный университет).

Рецензенты 2-го издания (2014 г.):

д.т.н., профессор *В.В. Козик* (Томский государственный университет) д.х.н., доцент *С.В. Темерев* (Алтайский государственный университет)

В 24 **Введение в общую химию** [Текст] : учебное пособие / В.М. Белов, Г.М. Мокроусов, В.А. Новоженов, В.П. Смагин. – Изд. 2-е, перераб. и доп. – Барнаул : Изд-во Алт. ун-та, 2014. – 194 с.

ISBN 978-5-7904-1780-1

Приводятся сведения об энергетике и кинетике химических реакций, о строении атомов, химической связи, периодическом законе и Периодической системе элементов. Пособие содержит контрольные вопросы и задачи, справочные данные, варианты тестовых заданий, необходимые при организации самостоятельной работы студентов и самоконтроле полученных знаний.

Пособие предназначено для студентов нехимических специальностей, изучающих общую химию в рамках Федерального государственного образовательного стандарта третьего поколения.

УДК 54(075.8) ББК 24.1я73

Настоящее издание публикуется в рамках реализации Программы стратегического развития Алтайского государственного университета

ISBN 978-5-7904-1780-1

- © Белов В.М., Мокроусов Г.М., Новоженов В.А., Смагин В.П. 2014
- © Оформление. Издательство Алтайского государственного университета. 2014

ОГЛАВЛЕНИЕ

Введение	3
Глава 1. Основные понятия, определения и законы химии	4
1.1. Закон сохранения массы вещества и энергии	5
1.2. Закон постоянства состава	6
1.3. Закон эквивалентов	6
1.4. Законы кратных отношений и простых объемных	
отношений	7
1.5. Закон Авогадро	8
1.6. Примеры решения задач	9
1.7. Контрольные задания	11
Глава 2. Основы термодинамики химических процессов.	
Термохимия и направленность химических реакций	14
2.1. Общие понятия	14
2.2. Тепловой эффект реакции	14
2.3. Законы термохимии. Закон Гесса.	
Термохимические расчеты	16
2.4. Энтропия	19
2.5. Энергия Гиббса	20
2.6. Энтальпийный и энтропийный факторы и направление	
химического процесса	22
2.7. Влияние температуры на направление реакции	22
2.8. Примеры решения задач	23
2.9. Контрольные задания	27
Глава 3. Элементы кинетики химических реакций.	
Химическое равновесие. Катализ	32
3.1. Скорость химической реакции	32
3.2. Факторы, влияющие на скорости химических реакций	33
3.3. Скорость реакций в гетерогенных системах	35
3.4. Химическое равновесие	36
3.5. Смещение кинетического равновесия.	
Принцип Ле Шателье	37
3.6. Катализ	38
3.7. Примеры решения задач	39
3.8. Контрольные задания	43
Глава 4. Строение атомов. Периодическая система	
элементов. Химическая связь	48
4.1. Строение атомов	48
4.2. Волновые свойства электронов	51
4.3. Квантовые числа	52

Оглавление

4.4. Строение многоэлектронных атомов	54
4.5. Периодический закон	55
4.6. Предпосылки построения рациональной системы	
химических элементов	56
4.7. Периодическая система элементов Д.И. Менделеева	58
4.8. Электронное строение и расположение элементов	
в Периодической системе	59
4.9. Периодический закон в свете учения о строении атома	60
4.10. Значение периодического закона и Периодической	
системы.	62
4.11. Основные виды и характеристики химической связи	62
4.11.1. Ковалентная связь	63
4.11.2. Ионная связь	66
4.11.3. Металлическая связь	66
4.12. Силы межмолекулярного взаимодействия	67
4.12.1. Водородная связь	68
4.13. Примеры решения задач	69
4.14. Контрольные задания	71
Глава 5. Жидкие растворы	76
 5.1. Общие понятия о растворах 	76
5.1.1 Растворимость	76
5.1.2 Способы выражения концентрации растворов	77
5.1.3.Идеальные растворы. Закон Рауля	77
5.1.4. Кипение и замерзание растворов	78
5.2. Химическое равновесие в растворах	79
5.2.1. Осмос	79
5.2.2. Сольватация	79
5.2.3. Растворы неэлектролитов	80
5.2.4. Растворы электролитов	80
5.2.5. Степень диссоциации электролитов	81
5.2.6. Теории кислот и оснований	81
5.2.7. Водные растворы электролитов.	
Слабые электролиты. Константа диссоциации	83
5.2.8. Сильные электролиты	84
5.2.9. Активность электролитов в водных растворах	85
5.2.10. Ионное произведение воды.	86
5.2.11. Водородный показатель воды (рН)	86
5.2.12. Равновесие в водных растворах труднорастворимых	
электролитов. Произведение растворимости	87
5.2.13. Смещение равновесия в растворах электролитов	87
5.2.14. Гидролиз солей	88

Введение в общую химию

5.3. Примеры решения задач	89
 Контрольные задания 	93
Глава 6. Окислительно-восстановительные процессы	97
6.1. Классификация реакций окисления-восстановления	99
6.2 Составление уравнений реакций окисления-	
восстановления	99
6.3. Составление уравнений реакций с участием воды	103
6.4. Составление уравнений реакций окисления металлов	
растворами кислот и щелочей	104
6.5. Окислительно-восстановительные эквиваленты	105
6.6. Примеры решения задач	106
6.7. Контрольные задания	109
Глава 7. Основы электрохимии	113
7.1. Общие понятия	113
7.2. Разность потенциалов на границе металл – раствор.	
Равновесные и стандартные потенциалы	113
7.3. Окислительно-восстановительные процессы	
в гальванических элементах. Уравнение Нернста	117
7.4. Кинетика электродных процессов. Поляризация	120
7.4.1. Концентрационная поляризация	121
7.4.2. Электрохимическая поляризация (перенапряжение)	122
7.5. Электролиз	123
7.6. Законы Фарадея. Кулонометрия	124
7.6.1. Примеры электролиза	125
7.7. Коррозия и защита металлов	126
7.7.1. Механизм электрохимической коррозии	127
7.7.2. Защита металлов от коррозии	128
7.7.3. Примеры схем коррозии	128
7.8. Примеры решения задач	129
7.9. Контрольные задания	131
Глава 8. Комплексные соединения	135
8.1. Устойчивость комплексных ионов	135
8.2. Номенклатура комплексных соединений	136
8.3. Изомерия комплексных соединений	139
8.4. Основные типы комплексных соединений	141
8.5. Окраска комплексных соединений	144
8.6. Степень окисления и структура комплексных соединений	145
8.7. Влияние количества d -электронов на свойства	
комплексных соединений	146
8.8. Теория химической связи в комплексных соединениях	147
8.9. Электростатическая теория	149

Оглавление

8.10. Метод валентных связей	150
8.11. Теория кристаллического поля	152
8.12. Метод молекулярных орбиталей	156
8.13. Примеры решения задач	164
8.14. Контрольные задания	165
Глава 9. Примеры решения химических задач методами	
линейной алгебры	167
9.1. Вычисление состава соединений, смесей, сплавов	167
9.2. Вычисления по уравнениям реакций	169
9.3. Определение количественных отношений в газах	170
9.4. Определение количественных отношений в растворах	171
9.5. Контрольные задания	172
Библиографический список	176
Приложения	177

Учебное издание

ВВЕДЕНИЕ В ОБЩУЮ ХИМИЮ

УЧЕБНОЕ ПОСОБИЕ

Редактирование и подготовка оригинал-макета: *Е.М. Федяева*

ЛР 020261 от 14.01.1997.

Подписано в печать 18.11.2014. Формат 60х84/16. Бумага офсетная. Усл. печ. л. 11,3. Тираж 100 экз. Заказ 430.

Издательство Алтайского государственного университета

Типография Алтайского государственного университета: 656049, Барнаул, ул. Димитрова, 66